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An approximate method of solving the problem of optimum control of the mo- 

tion of non-Newtonian fluid in the gap between rotating rollers is presented. 

The production and reprocessing of many nonmetallic materials (such as plastic, rub- 
ber, heat- and sound- insulating materials, etc. ) is carried out on rolling mills. 

The hydrodynamic theory of rolling [l, 21 was successfully applied for determining the 
conditions of rolling mill operation. In that theory the motion of material in the gap be- 

tween rollers is considered as the flow of a viscous non-Newtonian fluid, whose behavior 
at considerable rates of shear is satisfactorily described by the rheological power law 

U-41. 
As the result of complex shear strains a considerable part of mechanical energy is tran- 

sformed into heat, thus considerably altering the flow temperature field. 

The temperature of material in the gap is the determining factor in the productionof 

quality products, and also one of the basic parameters in the calculation of the production 
process power requirements. Thermal processes determine the technological conditions 
for obtaining the required finish of rolled sheet, viscosity of the processed material, and 

the quality of the finished product [5]. An excessive temperature rise inside the sheet, 

induced by the intensive mechanical processing may result in the formation of cracks, 

Fig. 1 

bubbles, and foliation in sheets and finished products [S]. 
The problem of maximizing the flow rate of a non-New- 

tonian fluid through the gap between two rotating cylinders 

(the problem of roller output maximization) is solved in 
this paper under conditions that would ensure the specified 
quality of products obtained at exit from the gap. 

1, Let us consider the problem of motion of a non- 
Newtonian fluid in the gap between cylinders of radius R 
rotating in opposite directions at peripheral velocity U 

(Fig. 1). The minimum gap dimension 2Ho is assumed 
small in comparison with radius fi (R >> 2N,). 

We assume that in the gap the flow is laminar, gravita- 
tional and inertial forces are small in comparison with fric- 

tion forces and may be neglected, the hydrostatic pres- 
sure changes only in the direction of motion of the fluid, 
and that in the considered zone of fiuid the material ad- 
heres to the cylinder surfaces. The motion of the fluid is 
symmetric about Ox. On these assumptions the equations 
of a plane nonisothermal flow of incompressible non-New- 
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tbnian fluid between rotating cylinders reduces to the system [7] 

(l-l) 

with boundary conditions 

~6” avx 
dY -ay= 0, Vv = 0 for 7j = 0 

(conditions of flow symmetry about OX) 

v, = ZL 
RfH”---h 

R ’ 
vp=u$ 

(1.2) 

(1.3) 

(conditions of fluid adhesion to cylinder walls), T = T, when y = h 

p=O, T=T, for 2 = ZQ (1.4) 

p = 0, dpldx = 0 (conditions of separation) for x = a1 (1.5) 

In these formulas p is the pressure; z is the tangential stress; v, and u, are components 
of flow velocity ; T is the temperature distribution in the flow of fluid ; p. is the visco- 

sity coefficient ; n is the index of fluid flow ; A is the thermal conductivity coefficient ; 
A is the mechanical equivalent of heat ; & is the cylinder radius; To is the tempera- 

ture of fluid ahead of entry into the gap ; T, is the surface temperature of cylinders ; b 
is a coefficient that defines the medium activation energy ; x0 and x1 are the coordinates 

of the beginning and end of contact between medium and rollers; h=R+H,,-- 
(RS - x2)*12 is the dimension of the half-gap, 

The peripheral velocity U, the preheating temperature To of the material, the sur- 

face temperature of rollers T,, and the loading depth of the gap x0 are controlling pa- 

rameters of the process which satisfy the inequalities 

O<U< Urnax, Twmin<Tw\<Twmx (1.6) 

We assume that for the specific values (u, T,, Tw and x0:0> there exists a unique so- 

lution of system (1.1) with conditions (1.2) - (1.5). 
Among the admissible values of controlling parameters we have to find those that en- 

sure the maximum flow rate of fluid through the gap at cross section zr (maximum out- 
put of rollers) or, what is equivalent, the minimum of functional 

0 = - j’ vx @I, Y) dy 
0 

(1.7) 

with the isoperimetric relationship 

where the physical meaning of Q is that of flow rate, Tj (z, 9) is the specified tem- 
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perature distribution in the gap region which is determined by technological conditions 

of rolling, y is the magnitude of integral quadratic deviation of temperature 2’ (3, Y) 
from the specified distribution Tj (2, y), and C is a constant, 

The method of solving variational problems is based on the universal device af vari- 
ational calculus consisting of the inclusion of exact equations of motion and of the iso- 
penmetric condition with undetermined multipliers in the supplementary functional 
(the method of Lagrange multipliers), and the calculations of variations of that function- 
al 181. 

2. The variation of parameters (U, T,, T, and 5s) alters the.values of functions 
that define the state of the process. The variation of parameters and functions of state 
induce the’ variation of the flow region boundaries, i.e. the displacement of the bound- 
ary points zs and q. 

We adjoin to system (1.1) the equation 

F Q sE - dTli?y = 0 

In conformity with the method proposed for solving variational problems of gasdyna- 
mics [S], the auxiliary functionals 

Q*=Q+Cj, y*=y+T 

are constituted and their first variations in the problem with movable boundaries q, and 
x1: 6Q* _= SQ -I- Sq and 6y* = 6y + 6p, where 

Q = ~;~jri,F&dr 

? = [ii1 hi*Fi&/ do 

are calculated. In the last formulas Ai = hi (s, 9) and %r* = Ai* (5, y) (i = 1, 
2 5) are the undetermined multipliers. 

i ~expressions of variations bQ* and 6~* we retain only variations of controlling 
parameters that are independent, and exclude remaining variations. 

For this we select the multipliers ht = hi (x, y) and hi* = xi* (s, q) SO that the 
expressions at variations of phase coordinates in SQ* and &y* vanish, This yields two 
systems of equations in hi and hi* 
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Boundary conditions for the adjoint systems are determined by the condition that the 
coefficients at variations of those of functions SQ* and .&ye whose values at the boun- 
dary are not specified, as well as at variation. of the mobile point q, must vanish. We 
have 

hs = A, = 0,. As* = A,* = 0 for y = 0 (2.3) 

h, = x4 = 0, A,” Z A** = 0 for y = h 

?Lz = 0, hs* = 0 for x = x0 

&=O, hpb=O, ~~~~~-~s~~~~=~~~ 
0 

h 

S[ 
h~*~-_~*~-(Tj-TT)?]dy=O for ~z:=Q 

a 

Variations SQ” and 6y* with allowance for (2.1) - (2.3) are defined by 

(2.5) 
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3, One of the methods of solving variational problems on conditional extremum is 
that of sequential descent [9& This method is a generalization of the basic ideas of the 
method of steepest descent and is extended to systems with distributed parameters and 
isoperimetric links, 

We specify the first approximation of controlling parameters (U(r), T&l), T,(l) 
and x&l)) in conformity with that method. There are no general recommendations for 
constructing the first approximation. A successive selection may ensure the minimum 
of functional Q with isoperimetric condition y = C and differential relational 
(1.1). To satisfy all these conditions in the first approximation is not always possible. 

We assume that the controlling parameters satisfy in what follows the inequalities 
(1.6). If the obtained values exceed the limits admitted by (1.6), we use the limit va- 
lues of controlling parameters, 

Using the first approximation we construct the solution of system (1.1) - (1.5) and 
determine the values of ~nc~ona~ Q and y. It should be expected that y # C and 

Q # min Q. Then on the basis of the first approximation of phase coordinates we de- 
termine the undetermined multipliers 3Li and 3Li* (i = 1, 2 . . . 5). 

Applying the method of sequential descent we achieve the fulfillment of conditions 
y = C and Q = min Q. First we fix the value of functional Q*, and assume that 

its first variation in the second and subsequent approximation 

SQ *Pa = 8Q*@) -_ , . _ = aQ*tn) = 0 (3.1) 
is zero. 

To satisfy the condition y = C we constitute with the use of formulas (2.4) and(2.5) 
the functional 

6y = by* + a6Q* (3.2) 

where a is a constant multiplier. 
From (3.2), by the method of steepest descent, we obtain variations of the controlling 

x.h 
T‘f 273 

b (T, + 273)s 7 (ha* + o&I dz/ dx 
Xl 0 

(3.3) 

where the constant pi (i = ‘i, 2, 3, 4) determines the approximation step. 
We substitute variations SU, 6To, al', and 6zo into the formula for SQ* (2.4) 

and,setting in accordance with (3.1) 6Q* = 0, obtain the equation for the determina- 
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tion of the constant multiplier a. 
Using small et (i = 1, 2, Y 4) we carry out several approximations for achieving 

Y c, as is made in the method of steepest descent. To obtain in each approximation 
the:alueS of (u(*) + au (s+I) T (8) + &T (s-0) T (s) + 6T@N and 3 (8) +- 
Ss+,@+“)), where s is the numb& of@approxim$on:we yolve the system of ~qs.‘(l. 1) , 
(2.1) and (2.2), determine its multiplier a in (3.2), and specify its step ui. 

Having obtained the fulfillment of the isoperimetric condition y = C, we pass to the 
derivation of controlling parameters that ensure min Q, The derivation procedure is 
the same as used in the derivation of parameters which satisfy the specified condition 

= C. We fix the value of functional y* and constitute SQ = SQ* + a&y* 
kng the method of steepest descent, determine variations of parameters bU 6T’ 

then, 
6T, 

and 6x,. Setting in each step 6y* = 0, we determine the constant a , and so rk 
The problem is considered solved when the condition Q = min Q is reasonablyex- 

actly satisfied. 
The actual derivation of the optimal solution requires the ability to construct solutions 

of equations of motion with an arbitrary law of variation of controlling parameters and 
of adjoint systems with known coefficients in their equations. 

4. The solution of equations of motion (1.1) -(I, 5) is given in C’71. 
In dimensionless coordinates F, = g/J.fm, and q = yfh the basic parameters 

of flow are of the form 

where 

‘b= =P[-b($*)], 

hl = R + Ho - (Ra - tj~~)“a, 

h= Rf Ho-(Ra-~a)r’* 

t= - J&g 
Parameter h, or coordinate El are determined by the 
the latter is satisfied we have 

condition p (El) = 0 . When 

R- Ho1 x 
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Introducing the dimensionless temperature difference 

8 = T - To/To 

we reduce the equation of energy in coordinates E and IJ to the form 

- (4.2) 

where G is the Randtl number, Y is the kinematic voscosity coefficient, and 

We seek the temperature distribution in the form of series 
00 

6 = $0 -t- 
z 

ek(~)CoS+, k=f,3,5 ,... - 

k=l 
(4.3) 

Substi~ting (4.3) into Eq. (4.2), mul~plying both sides of that inequa~ty by eos ~~/2~, 
where m also admits odd values, and integrating with respect to rj in the interval(0, l), 
for the determination of ok (5) we obtain the system of equations 

k=l 

(4.4) 

The coefficients in Eqs. (4.4) are of the form 

The system of Eqs. (4.4) is solved for boundary condition ok (to) = 0. 
The derived formulas were used for the numerical computation of physical flow para- 

meters of the fluid in the gap between cylinders of radius R = 0.25 m. The maximum 

gap 2Lfo = O.2*1O-s m, the depth of loading %@ = -2, the rollers surface tempera- 
ture T, = To = 150” C, and the peripheral velocity of rollers U = 0.8 mlsec. The 
thermophysical properties of the fluid are defined by the following parameters: PO = 

0.484. 10s N l set/ma; n = 0.23; p = 1.38 N/m3; b = 26.6; cp = 0.025 kcal/N l deg; 
L=0.1a109 kcal/m. sec. deg. 

Derivation of the process functions of state is carried out by the method of successive 
approximations. 

In the zero approximation f)(O) (%, V$ = 0 is assumed. Formula (4.1) is used for cal- 
culating on the basis of the zero approximation of temperature the zero approximation 
IQ”‘, V* ‘O), p(“’ (%I, while A$, and Cg) are determined by the zero approximation 

“I! (0) . These approximations are used for solving system (4.4), then the first approxima- 
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tion of temperature W (E, q) (4.3) is determined, and so on. 
Convergence of successive approximations is not considered here, but in the example 

of calculations presented here it was found that the second approximation of the function 
of state differed from the first one by not more than 3%. 

The distribution of velocities r+ and vn , and of the pressure p (5) in the zero (solid 

lines) and second (dash lines) approximations are shown in Figs. 2 - 4. The second ap- 

proximation of temperature at cross section E = - 1.8 represented by the sum of three 
terms of series (4.3) and computed with the use of the zero approximation of z+ appears 

in Fig. 5 (owing to its symmetry only the region 0 < q f 1 is shown). 

Fig. 2 

-2 -7 

Fig. 3 

-7 u 

Fig. 4 Fig. 5 
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Let us consider the integration of the adjoint system of equations, and obtain the SO~U- 

tion of system (2.2). We eliminate ha* and I,* from the equations,and represent these 

(4.5) 

in dimensionless coordinates E and q as 

~+b(5)11rl~l”-l~+b(5)~(tp[~~-l) y 

8T 
PC&~” aE - A 

n+i a 
7 --g (da*) I= 0 

--+g+(Qf_ a,+ ABz ar,‘h,_ 

* )/2RH,hac arl ) 4 

a&* 

1/2$& -x-- + 

2.f2RH,(Ti- T) 
=o 

PCPV4 
1 

s 

const 
'h$*d?j =h 

0 

The dimensions of multipliers hi* (i = 1, 2, 4) are: [&,*I = degam3/N,&,*l = 

dega set, [&*I = d g e 2mssec/kcal. After these transformations the boundary condi- 

(4.6) 

tions assume the form 
a?b,* 

- = - = 0 i%,* 
a arl 

for q(= 0 (4.7) 

?L,* = ?L4* = 0 for rl = 1 

where 

B 
b 1/2RH, 

= pcP(3’,+273) ’ h=h(E) 

Multipliers h,* and h4* are sought in the form 

which satisfies boundary conditiond (4.7). Here m and k are odd. 
As in the solution of the energy equation, we substitute expansions (4.8) into Eqs. (4.5) 

multiplying these, respectively, by cos sn/a 11 and cos pn/2 9 (s and p are odd), 
integrate with respect to 9 in the interval (0, l), and obtain 

m 

dhn* 
A-- 

dE c Bm,bm* - c D&&* = 0 (4.9) 

Tn=1 k=l 
m 02 

dh4p* _ 

dE c 
A&r* -- 

c 
Cm&m* f CP* = o 

Ii=1 m=l 
where 
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The integral condition (4.6) after the substitution into it of expansion of A,* from(4.8) 

and transformations. assumes the form 

m hn* c- const 
m 

sin?= h(S) 
(4.10) 

m=l 

The boundary conditions for the system (4.9), (4.10) are: 

ht* (Eo) = 0, &k* (&) = 0 

For determining the constant we use the value of function As* at the boundary E = El 
Integration of Eq& (4.9) and (4.10) yields the distribution of As* (%), A& (&) and 

htk (5) (m, k = 1,3,5,. . 4, which together with expansions (4.8) represent the solu- 

tion of system (4.5). 
Solution of system (2.1) is similarly derived. 

Let us consider the example of computing the optimal control. Let Tj = eon& = 150” C, 
and y = C = 2 deg’s. 

We shall determine the optimal peripheral velocity UO, wall temperature T,o, tem- 
perature T,, of preheating of the material, and the optimal depth Eoo of roller loading 
during the processing of a material whose thermophysical properties are described above. 

We specify the controlling parameters in the first approximation with allowance for 

the inequalities 0 < u 6 u,,, = 0.8 n-&c, O< T,< T,,,, = 150°C 

0 ( T,, < Tomax = 170” C, 0 > %o\& Eomrn = -2 
Let 

u(1) = u,,, = 0.8 m/set, To(‘) = 155’ C; T,(l) = 145O C, Ee - -2 

The distribution of temperature 6, and functions hi and Ai* (i = 1,2,4) will be re- 

presented by a single term of the expansion. 
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We solve the input system of Eqs. (1. J) - (I, 5) with the use of the first approximation 

of parameters (W, To (1) T (1) , w and &(I)) and check the fulfillment of conditions Q = 

min Q and Y = C. In the considered case Q = min Q, but y > C. 
We determine multipliers hi and hi* (i = 1, 2,4), and constitute the expressions ofpa- 

rameter variations and the equations for determining the constant multiplier 01. We spe- 

cify the following approximation steps: e, = 0.~05; es = 29; as = 1.25 and e, = 0.0005 
and determine a. 

We determine the increments 8U, 8T,, ST, and 6x, and the second approxima~on 

for the control parameters ( W@, T,(~), T,“@ and &,@)). 
In the second approximation coordinate 5,, t2) exceeds the admissible limit go = -2. 

In subsequent approximations we set &, = - 2. We achieve the fulfillment of condition 

y = C in the third approximation, which means that U(3) = U,, Td3) = TOO, T,“) = 
T@, and I$@) = &00 represent optimal values. Results of computations are given in 

Table 1. 
Table .l 

approxima- 
tion Nz I 

u, mlsec I 
I 

To, deg 
I 

Tws deg / 40 1 o.ia-*,lmysecl y, deg* 

1 0.8 155 145 -2 94.75 23.45 
2 0.755 Ijir 146.1 -2 89.60 14.11 
3 0.704 144.2 141.9 -2 83.70 

Table 2 

approxima- 
tion W / u, m/s= 1 T*, deg / Twl deg / FO lo.%a-..mt,se{ Y,~~x 

1 0.704 144.2 147.9 -2 83.70 6.867 
2 0.606 134.6 150 -2 72.10 2.43 
3 0.515 129.5 150 -2 60.92 2.38 
4 0.400 124 150 -2 47.70 2.0 

Results of computations of optimal control presented in Table 2 relate to the case in 
which the the distribution of temperature 0 and multipliers A+i and hi* (i = 1,2,4) are 

defined by the sum of the first two terms of the series. 
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